Performance regulation of event-driven dynamical systems using infinitesimal perturbation analysis
نویسندگان
چکیده
منابع مشابه
Using infinitesimal perturbation analysis of stochastic flow models to recover performance sensitivity estimates of discrete event systems
Stochastic Flow Models (SFMs) form a class of hybrid systems used as abstractions of complex Discrete Event Systems (DES) for the purpose of deriving performance sensitivity estimates through Infinitesimal Perturbation Analysis (IPA) techniques when these cannot be applied to the original DES. In this paper, we establish explicit connections between gradient estimators obtained through a SFM an...
متن کاملDynamic Bandwidth Allocation Using Infinitesimal Perturbation Analysis
Advances in network management and switching technologies make dynamic bandwidth allocation of logical networks built on top of a physical network possible. Previous proposed dynamic bandwidth allocation algorithms are based on simplified network model. The analytical model is valid only under restrictive assumptions. Infinitesimal Perturbation Analysis, a technique which estimates the gradient...
متن کاملMulti-intersection traffic light control using infinitesimal perturbation analysis
We address the traffic light control problem for multiple intersections in tandem by viewing it as a stochastic hybrid system and developing a Stochastic Flow Model (SFM) for it. Using Infinitesimal Perturbation Analysis (IPA), we derive on-line gradient estimates of a cost metric with respect to the controllable green and red cycle lengths. The IPA estimators obtained require counting traffic ...
متن کاملAugmented infinitesimal perturbation analysis: An alternate explanation
Augmented infinitesimalperturbation analysis (APA) was introduced by GaJvoronski [ 1991] to increase the purview of the theory of Infinitesimal Perturbation Analysis (IPA). In reference [Gaivoronski 1991] it is shown that an unbiased estimate for the gradient of a class of performance measures of DEDS represented by generalized semi-Markov processes (GSMPs) (cf. [Glynn 1989] can be expressed as...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Hybrid Systems
سال: 2016
ISSN: 1751-570X
DOI: 10.1016/j.nahs.2016.03.007